Αν για κάτι φημίζονται τα μαθηματικά είναι για την ακρίβεια και την «αλήθεια» τους. Στον κόσμο των μαθηματικών δεν υπάρχει χώρος για ασάφειες και παρερμηνείες. Και παρόλο που αυτά βρίσκουν καθολική εφαρμογή σε πολλούς τομείς της καθημερινότητας μας, υπάρχουν κάποιοι τομείς που δείχνουν να αψηφούν την δύναμη τους και να αμφισβητούν την αλήθεια τους. Ένας από αυτούς τους τομείς είναι και αυτός των ανθρώπινων σχέσεων και συγκεκριμένα της επίλυσης των προβλημάτων.
Είτε αναφερόμαστε στην προσωπική μας ζωή, είτε στην επαγγελματική είναι σίγουρο ότι ασχέτως το πόσο καλή είναι η σχέση μας με τους άλλους, κάποια δεδομένη στιγμή θα προκύψουν εντάσεις και διαφωνίες. Σε μια τέτοια διαφωνία κάθε πλευρά θα προσπαθήσει να υπερασπιστεί την αλήθεια της, καθώς σύμφωνα με την άποψη της είναι αυτή που έχει τελικά το δίκαιο.
Δεν είναι λίγες οι φορές που η όλη διαδικασία καταλήγει σε μια «οχλαγωγία» καθώς ο συνομιλητής μας παραθέτει το αντεπιχείρημα του πριν καν προλάβουμε να ολοκληρώσουμε τη σκέψη μας ,πιστεύοντας ότι με αυτά που έχει ακούσει, έχει καταλάβει τι θέλουμε να πούμε.
Το «μαζί» είναι πάντα μεγαλύτερο του αθροίσματος των 2 επιμέρους «εγώ»
Στις καλύτερες των περιπτώσεων ο συνομιλητής μας, μας δίνει το χώρο και το χρόνο να εκφράσουμε τις απόψεις μας, αλλά στην ουσία δε μας ακούει πραγματικά, γιατί καθώς εμείς τεκμηριώνουμε την άποψη μας εκείνος σκέφτεται τι ακριβώς θα απαντήσει μόλις εμείς ολοκληρώσουμε την σκέψη μας.
Όποια όμως και να είναι η ποιότητα της επικοινωνίας μας η κατάληξη περιλαμβάνει συνήθως τις παρακάτω 2 εναλλακτικές:
Η πρώτη εναλλακτική είναι η εξής: Ή εμείς θα πείσουμε το συνομιλητή μας για το δίκιο μας ή αυτός θα πείσει εμάς. Και στις δύο όμως περιπτώσεις κάποιος είναι ο «νικητής» και κάποιος είναι ο «ηττημένος». Και εκεί είναι που υπάρχει το πρόβλημα. Μπορεί να καταφέραμε να «πείσουμε» τον άλλον να «συμφωνήσει» με την άποψη μας αλλά είμαστε σίγουροι ότι αυτό έγινε με την θέληση του; Είμαστε σίγουροι ότι αυτή η «συμφωνία» θα έχει και την ανάλογη διάρκεια ή μόλις θα απομακρυνθούμε ο καθένας θα επιστρέψει στις απόψεις του;
Η δεύτερη εναλλακτική είναι τα επιχειρήματα και των 2 πλευρών να είναι τόσο αδιαμφισβήτητα ώστε στο τέλος να καταλήξουμε σε κάποιο είδος συμβιβασμού. Μπορεί σε σχέση με την «ολοκληρωτική» ήττα της 1ης εναλλακτικής ο συμβιβασμός να είναι καλύτερος, δεν παύει όμως να εμπεριέχει το στοιχείο της ήττας, έστω και αν αυτή έχει μοιραστεί ισομερώς αυτή τη φορά.
Αφού όμως και οι 2 παραπάνω εναλλακτικές αφήνουν όπως και να έχει κάποιο από τα 2 μέλη με το αίσθημα της ήττας πως μπορούμε να ξεπεράσουμε αυτό το εμπόδιο; Υπάρχει κάποιος άλλος τρόπος;
«Υπάρχει ένας τρόπος για την επίλυση των πιο δύσκολων προβλημάτων που αντιμετωπίζουμε, ακόμα και εκείνων που φαίνονται αξεπέραστα. Υπάρχει μια διαδρομή που διαπερνά σχεδόν όλα τα διλήμματα της ζωής. Υπάρχει μια διέξοδος προς τα εμπρός. Δεν είναι ο τρόπος σας, και δεν είναι ο τρόπος μου. Είναι ένας υψηλότερος τρόπος. Είναι ένας καλύτερος τρόπος από οποιονδήποτε έχουμε ποτέ σκεφτεί. Τον αποκαλώ 3η εναλλακτική λύση» , αναφέρει ο καθηγητής Dr Stephen R. Covey στο βιβλίο του «The 3rd Alternative» .
Δεν είναι ο τρόπος του ενός, ούτε του άλλο , είναι ο τρόπος τους και είναι ο τρόπος της συνέργειας.
Συνέργεια είναι ο τρόπος που προκύπτει αν και τα 2 μέρη είναι έτοιμα να απαντήσουν θετικά στην παρακάτω ερώτηση: «Είσαι πρόθυμος να κοιτάξουμε για μια 3η εναλλακτική λύση την οποία δεν έχουμε σκεφτεί ακόμα;» . Η συνέργεια δεν είναι το ίδιο με το συμβιβασμό καθώς στο συμβιβασμό, κάθε μέρος χάνει και κάτι. Η συνέργεια δε δίνει απλά λύση αλλά μεταμορφώνει την όλη διαδικασία και την μεταξύ τους σχέση.
Αν ανατρέξουμε στην ερμηνεία της συνέργειας θα δούμε ότι είναι η αλληλεπίδραση ή η συνεργασία δύο ή περισσοτέρων οργανισμών, ουσιών ή άλλων παραγόντων για να παράγουν ένα συνδυασμένο αποτέλεσμα μεγαλύτερο από το άθροισμα των επιμέρους αποτελεσμάτων τους.
Αν θέλουμε λοιπόν να βγαίνουμε πάντα κερδισμένοι μέσα από κάθε σχέση, συναναστροφή ή διαμάχη, ακόμα και απέναντι σε «αλήθειες» όπως αυτές των μαθηματικών, θα πρέπει να θυμόμαστε ότι αντί να επιλέγουμε το μοναχικό δρόμο του «εγώ» μας, να επιλέγουμε τη διαδρομή της συνέργειας, γιατί το «μαζί» είναι πάντα μεγαλύτερο του αθροίσματος των 2 επιμέρους «εγώ».
Σχόλια